Code-Generating Neural Networks

Топ-10 Code-Generating Neural Networks

Model Name
Developer
Parameters (Est.)
Languages
Speed
Price
Memory / Requirements

1

DeepSeek-Coder V2

DeepSeek

~33B

Python, Java, C++, Rust, JS, Go

High

API (Paid)

Moderate (~15–20 GB VRAM)

2

Codestral MoE

Mistral AI

~56B (MoE)

Python, JS, Java, SQL, Rust

Very High

API (Paid)

High (~24+ GB VRAM)

3

Qwen-Coder 72B

Alibaba Cloud

72B

Python, Java, JS, C++, TS

Medium

API (Paid), ModelScope

Very High (~40+ GB VRAM)

4

Code Llama 34B

Meta

34B

Python, C++, Java, Rust, JS

Medium

Free (Open-source)

Moderate (~20 GB VRAM)

5

StarCoder2

BigCode (HuggingFace)

20B

80+ languages

High

Free (Open-source)

Low (~8–12 GB VRAM)

6

OpenAI Codex

OpenAI

~120B

Python, JS, TypeScript, Bash

Medium

API (Paid, Limited Access)

Very High (~60+ GB VRAM)

7

GitHub Copilot X

GitHub + OpenAI

~12B+

20+ languages

High

Subscription ($10/mo)

Depends on GPT model

8

PanGu-Coder++

Huawei

~TBA

Python, Java

Medium

API (Paid)

Moderate (~15 GB VRAM)

9

Phind Code LLM

Phind

~TBA

Python, JavaScript

High

Free (Non-commercial Use)

Low (~8 GB VRAM)

10

Replit Code-3B

Replit

3B

JavaScript, Python

Very High

Free (Open-source)

Very Low (<4 GB VRAM)


Notes:

Speed

  • Based on benchmarks like HumanEval and MBPP.

  • Depends on architecture, optimization, and model size.

Price

  • Free (open-source) — can be downloaded and used at no cost.

  • API (paid) — available via cloud platforms with usage-based pricing or subscriptions.

  • Subscription — monthly payment for access (e.g., GitHub Copilot).

Memory / Requirements

  • Low: < 8 GB VRAM

  • Moderate: 8–20 GB VRAM

  • High: > 20 GB VRAM

Last updated

Was this helpful?